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Inverse Synthetic Aperture Radar Imaging Via
Modified Smoothed Norm

Jieqin Lv, Lei Huang, Member, IEEE, Yunmei Shi, and Xiongjun Fu

Abstract—Compressive sensing theory is able to exactly recover
an unknown sparse signal from observation samples with high
probability. In this letter, we convert the imaging into a problem
of signal reconstruction with the aid of orthogonal basis in the
framework of high-resolution inverse synthetic aperture radar
imaging. More specifically, we propose a new method based on
smoothed norm, whose recovery rate is faster than the algo-
rithm based on norm. Experiment results with real data show
that our proposal is more efficient than the norm algorithm.

Index Terms—Compressive sensing, inverse synthetic aperture
radar, signal reconstruction, smoothed norm.

I. INTRODUCTION

A S A powerful signal processing technique, inverse syn-
thetic aperture radar (ISAR) is able to image moving tar-

gets in range and cross-range domains. Basically, ISAR pro-
cessing is used for target identification and classification. Due
to its wide application, high-resolution ISAR imaging has re-
ceived much attention in the literature, such as [1]–[4]. In order
to obtain high resolution, we need to increase the transmitted
signal bandwidth and coherent processing interval (CPI). The
former determines the range resolution, which is limited by the
radar system, whereas the latter determines the cross-range res-
olution. However, large CPI can lead to some problems: 1) It
canmake the target-motion compensationmore complex. 2) Be-
cause of the uncooperative character of the targets, large ob-
serving interval for data collection may be unachievable. As a
result, how to obtain enough measured data is the key problem.
Some methods such as MUSIC [5] can achieve super-resolu-
tion profile, but require more accurate estimations of the co-
variance matrix and model orders. Under the conditions that the
radar data sampling rate is small and observation data are lost
partially, these methods cannot provide good profile. Compres-
sive sensing (CS) is a signal processing technique for efficiently
acquiring and reconstructing a signal by finding solutions to
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underdetermined linear systems. The CS theory takes advantage
of the sparseness or compressibility of signals in some domain,
allowing the entire signal to be determined from relatively few
measurements. The key issue of CS is to find the sparse solution
of the underdetermined linear systems. When the dimension in-
creases, it is shown in [6] that solving the minimum norm is
an intractable problem. Moreover, it is sensitive to noise. Some
authors have proposed successful approaches such as Basis Pur-
suit (BP) [7] and -SVD [8], which finds the sparse solution by
minimizing the norm. The methods based on minimum
norm need a large system of equations. In [9], it is revealed that
the algorithms based on smoothed norm can achieve
the same (or higher) accuracy under small sample scenarios and
has the faster convergence rate.
In this letter, we address the radar high-resolution imaging

model and transform it into a sparse signal representation
problem. Based on the smoothed norm method, we propose
a modified smoothed norm method that can give
a better sparse solution. The experimental results show that the
proposed approach can obtain high-quality image under the
scenarios where the data sampling rate is small and data are
lost partially.

II. ISAR MODEL AND IMAGING

Assume the radar signals are on the conditions of free
space propagation and far-field plane wave approximation.
The backscattered characteristics are described by an ideal
point-scattering model. Suppose that the radar transmits a linear
frequency-modulated signal and the radar echo from a point is

(1)

where and are the chirp rate and carrier frequency, re-
spectively, is the observed duration, is the pulse duration
of single pulse, is the fast time, is the slow time, is the
scattering amplitude, and is the unit rectangular func-
tion. We have converted the range variable into time delay

, where is the propagation velocity of light.
Assume that the translational motion has been removed by

the conventional compensation, the range compression has been
conducted, and the phase error has been corrected. Moreover,
we assume that the range cell contains scattering centers with
different cross-range locations. If the rotational motion is sta-
tionary, we have the complex envelope of the echo signal in the
range cell

(2)
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After cross-range compression by applying azimuth Fourier
transform to (2), the signal is written as

(3)

where represents the Doppler frequency. As the cross-range
coordinate of a scattering center is proportional to , the image
formation of target can be resolved in the Range-Doppler (RD)
domain. This is the RD framework where the cross-range axis
is replaced by the Doppler axis. According to the scattering
properties of an object, we know that the strong scattering
centers have large scattering coefficients and make the main
contribution to the image formation. On the contrary, the weak
scattering centers and noise have little contribution to the
image formation. As a result, the radar echoes are of sparsity.
In this letter, we use the sparsity as the global metric of image
and construct an imaging algorithm based on the compressive
sensing theory.

III. ISAR IMAGING VIA CS

A. CS-Based Imaging Model

In order to recovery signal from limited measurements, some
authors have used the theory of CS [10], [11]. Let
be a signal we wish to decompose over a given basis

. We then have , where
is the corresponding coefficient vector. If

includes largest coefficients, then we define as a sparse
vector [10]. Utilizing the measurement matrix , we can get

, where
and . If the dictionary matrix satisfies the restricted
isometry property (RIP) [12] and , the coef-
ficients can be recovered from with overwhelming probability
by solving

subject to (4)

where denotes the norm, i.e., number of the nonzero
components of . However, (4) is an intractable problem since
it requires combinational search, as has been pointed out in [11].
To seek the solution, one resorts to the minimum norm,
where satisfies . Unlike the minimum norm
method, the smoothed norm algorithm directly minimizes
the norm by using a continue function to approximate it.
The noisy signal at the range cell model for short CPI can be

rewritten as

(5)

where is the synthetic additive noise in the range cell. Assume
that is the pulse repetition frequency, is the time
resolution, is the pulse number, and the time vector
is . We also define is the frequency resolution.

As a result, the discrete Doppler vector is .
Then, we get the sparse basis matrix for the radar echo signal

...
...

...

and choose a random partial unit matrix (namely, randomly se-
lected rows from the unit matrix ) as the measurement
matrix

...
...

...
...

...

where . Thus, we get the dictionary ma-
trix . As the Fourier matrix has a better noncoher-
ence than the Gaussian matrix when used as a dictionary ma-
trix, it will be employed in this letter. Obviously, the dictionary
matrix is the partial Fourier matrix, which satisfies the RIP.
Therefore, we can recover the original signal from the measure-
ments via the dictionary matrix. Then, we can convert the radar
imaging model to the new imaging model based on CS

(6)

where represents the amplitudes of the scattering points.
Therefore, we can get the amplitudes of the scattering points
by solving

s.t (7)

where is an upper bound for the noise level. As mentioned
above, it is difficult to apply the norm to obtain the solution
because the norm of a vector is highly discontinuous. Thus,
we approximate it using a continuous Gaussian function.

B. Modified Smoothed Norm Approximation

The smoothed norm approaches are based on the approx-
imate norm with a sequence of continuous functions. These
methods turn out to be the norm as in some sense [9].
As a result, we can use the following function to approximate
the norm:

(8)

which converges to the norm as , where

(9)

and

if
if .

(10)

It is clear from (9) that for small values of .
Moreover, when , this approximation becomes equality.
In practical scenarios, the observations are contaminated, and
the sampling model is , where represents the
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additive zero-mean white noise. Then, we can obtain the sparse
solution by solving

s.t (11)

It is shown in [9] that for small values of , is highly
nonsmooth and has several local maxima that lead to the
difficulty of its maximization. However, for large values of
, is smoother and contains less local maxima so that the
maximization procedure can be easily carried out. Therefore,
we choose a decreasing sequence for and maximize the
for each value of . Based on the method of [14], we use the
weighted least-squares approach to modify the initial value so
that the modified smoothed norm algorithm can converge to
the sparse solution faster and more accurate. For the noisy case,
it is noticed that using the Lagrangian function, the problem
can be written as

(12)

where is the regularization parameter and depends on (noise
level). Based on [14], we can define such that its diagonal
elements are

where represents the th component of the estimated so-
lution , which is found by minimizing subject to

. Experimental results show that choosing in the range
to [0.001, 0.01] is helpful to get the accurate solution. The so-
lution to (12) is

(13)

The first term in (12) minimizes the residual error, whereas the
second term is the regularization factor that encourages sparsity
in the successive solutions. In order to reduce the computational
cost, we can rewrite (13) as

(14)

We choose as the initial value for , then
, which makes the less likely to get trapped

into the local maxima, and also accelerates the convergence
speed. To summarize, the modified smoothed norm algo-
rithm is depicted in Table I.

IV. REAL DATA PROCESSING

In order to demonstrate the superiority of -based
imaging approach, the experimental results of the norm,
norm, and weighted norm algorithms are pre-

sented as well. We use a set of real data of Yak-42 plane and
present the experimental results in this section. The parameters
of radar are listed in Table II. In the following experiments,
128 pulses within a dwell time of [-0.64, 0.64] s are used.
To illustrate the superiority of the algorithms, we add white

TABLE I
MODIFIED SMOOTHED NORM ALGORITHM

TABLE II
RADAR SYSTEM PARAMETERS

Fig. 1. Images under SNR of 5 dB with constant pulse number, i.e., 32.

Gaussian noise to the real measured data to obtain different
signal-to-noise ratios (SNRs) and use different pulse numbers
(i.e. 64, 32, and 8 pulses) in our experiments. Furthermore,
the experimental results show that choosing in the range to
[0.1, 2] is helpful to get accurate solution at different SNRs.
From Fig. 1, we can observe that the -based approach

has a better performance than the -based algorithm under
the same conditions. In particular, the -based approach
is able to recover the image with much less artificial points and
extracts more scattering centers of the plane.
Figs. 2 and 3 indicate that the image obtained by the

norm algorithm is more unambiguous than the [9],
norm [13], and weighted norm [13] algorithms.
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Fig. 2. Images under SNR of 10 dB with constant pulse number, i.e., 8.

Fig. 3. Images under SNR of 2 dB with constant pulse number, i.e., 64.

Let us now evaluate the computational complexity of the
imaging algorithms. In our experiments, we use the CPU time
as the processing time that was measured on an Intel Processor
2.60 GHz with 4 GB RAM. All simulations are performed in the
MATLAB 7.0 environment. Although it is not an exact measure,
the processing time gives a rough estimation of the complexity,
enabling us to compare the norm algorithm with the
other three algorithms. We have repeated 1000 times for each
algorithm, and the values of the processing time are obtained
by averaging the simulations. Table III implies that the
norm algorithm is faster than the [9], norm [13], and
weighted norm [13] algorithms. As pointed out in [9], the
complexity relationship between norm algorithm and
norm algorithm is about two or three orders of magnitude.

TABLE III
PROCESSING TIME FOR IMAGING UNDER SNR OF 2 dB WITH 64 PULSES

V. CONCLUSION

In this letter, we have devised the modified smoothed
norm algorithm for inverse synthetic aperture radar imaging.
The experiments of real data show that our proposal provides
better imaging performance and requires much less computa-
tional complexity. However, the proposed algorithm cannot
adaptively determine the parameters , , and , like [9],
[14], and [15]. That is to say, they are all empirical values. In
our future work, this problem will be tackled in the form of
adaptive adjustment.
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